Definition 1 : the proposition “not p”--- ¬ p.
TABLE 1 : The truth table for ¬p | |
p | ¬p |
T | F |
F | T |
Definition 2 : the proposition “p and q”---p ʌ q.
TABLE 2 : The truth table for p ʌ q | ||
p | q | p ʌ q |
T | T | T |
T | F | F |
F | T | F |
F | F | F |
Definition 3 : the proposition “p or q”---p v q.
TABLE 3 : The truth table for p v q | ||
p | q | p v q |
T | T | T |
T | F | T |
F | T | T |
F | F | F |
Definition 4 : the proposition (if…..then…)---p → q.
TABLE 4 : The truth table for p → q | ||
p | q | p → q |
T | T | T |
T | F | F |
F | T | T |
F | F | T |
Definition 5 : the proposition (if and only if)---p ↔ q.
TABLE 5 : The truth table for p ↔ q | ||
p | q | p ↔ q |
T | T | T |
T | F | F |
F | T | F |
F | F | T |
No comments:
Post a Comment